

Chinese Chemical Letters 20 (2009) 827-829

A novel phenylpropanoid glycoside from *Callicarpa* kwangtungensis Chun

Er Lei Xie a, Guo Ping Zhou a,*, Teng Fei Ji b,*, Jun Wu c, Gui Ping Yuan a

^a Jiangxi Provical Institute for Drug and Food Control, Nanchang 330029, China
^b Key Laboratory of Bioactive substances and Resources Utilization of Chinese Herbal Medicine, Institute of Materia Medica,
Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
^c Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology,
Chinese Academy of Sciences, Guangzhou 510301, China

Received 27 November 2008

Abstract

A novel phenylpropanoid glycoside, Callicarposide A has been isolated from the aerial parts of *Callicarpa kwangtungensis* Chun. The chemical structure is elucidated on the basis of spectral analysis.

© 2009 Teng Fei Ji. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.

Keywords: Callicarpa kwangtungensis Chun; Phenylpropanoid glycoside; Callicarposide A

The aerial parts of *Callicarpa kwangtungensis* Chun are used in Chinese herbal medicine for the treatment of pectoragia and haematemess. We report the isolation and structure elucidation of a novel phenylpropanoid glycoside, callicarposide A (compound 1) that has been isolated from the aerial parts of *C. kwangtungensis* Chun.

The aerial parts of *C. kwangtungensis* Chun (2.05 kg) were purchased in Nanchang, and identified by pharmacia Yuan-guiping, JiangXi Provical Institute for Drug and Food Control. The voucher specimen (No. 201-A89-12-01) has been deposited at the JiangXi Provical Institute for Drug and Food Control. The *n*-BuOH-soluable part (100 g) of the water extract was repeatedly chromatographed over macroporous resin HP-20, Sephadex LH-20 column and preparative HPLC to give **1** (11 mg, 0.0055%).

Compound 1 was obtained as light yellowish gum, $[\alpha]_D^{20} - 23.3$ (c 0.0015, MeOH). In the (+)-TOF-MS of 1, quasimolecular ion peaks were observed at m/z 777 [M+Na]⁺, HR-TOF-MS (m/z 777.2245 [M+Na]⁺) analysis revealed the molecular formula of 1 to be $C_{34}H_{42}O_{19}Na$ (calcd. 777.2212).

In the 1 H spectra of **1** exhibited the presence of two sets of AMX systems [$\delta_{\rm H}$ 6.74 (d, 1H, 1.0 Hz), $\delta_{\rm H}$ 6.70 (d, 1H, 8.0 Hz) and $\delta_{\rm H}$ 6.66 (dd, 1H, 8.0/1.0 Hz) for the 2-(3,4-dihydroxyphenyl)-2-hydroxyethan-1-oxyl moiety; $\delta_{\rm H}$ 7.03 (d, 1H, 1.5 Hz), $\delta_{\rm H}$ 6.76 (d, 1H, 8.0 Hz) and $\delta_{\rm H}$ 6.99 (dd, 1H, 8.0/1.5 Hz) for the caffeoyl moiety], two trans-olefinic protons [$\delta_{\rm H}$ 6.20 (d, 1H, 15.5 Hz) and $\delta_{\rm H}$ 7.50 (d, 1H, 15.5 Hz)] together with three anomeric protons $\delta_{\rm H}$ 4.55 (d, 1H, 7.5 Hz) for $\beta_{\rm H}$ 9-glucose, $\delta_{\rm H}$ 4.98 (s, 1H) for $\alpha_{\rm H}$ rhamnose and $\delta_{\rm H}$ 4.77 (d, 1H, 3.0 Hz) for $\beta_{\rm H}$ apiose. Comparism of the 13 C NMR spectral data with 2"-O- $\beta_{\rm H}$ apiosylverbasco-side suggested that have three sugar moiety, anomeric carbon signals

E-mail address: jitf@imm.ac.cn (T.F. Ji).

^{*} Corresponding author.

Fig. 1. Key HMBC correlations of compound 1.

 $\delta_{\rm C}$ 96.5 for β-glucose, $\delta_{\rm C}$ 100.2 for α-rhamnose and $\delta_{\rm C}$ 109.0 for β-apiose, and the glucose is the core sugar with 2-(3,4-dihydroxyphenyl)-2-hydroxyethan-1-oxyl moiety located at C-1" as well as the trans-caffeoyl moiety linked at C-4" [1–3].

Acid hydrolysis of **1** with 5 mol/L HCl furnished L-rhamnose, D-glucose which were identified by HPLC analysis of the 1-phenyl-3-methyl-5-pyrazolone(PMP) derivatives [4]. From biogenetic considerations, apiose should be as D-sugar [5,7].

The structure of **1** was determined on the base of HMBC spectrum, the H-1 of apiose at δ_H 4.77 correlated with C-2 of the glucose at δ_C 80.2, the H-1 of rhamnose I at δ_H 4.98 correlated with C-3 of the glucose at δ_C 73.9, the H-4 of glucose at δ_H 4.84 correlated with C- α of the caffeoyl moiety at δ_C 165.4 [6], the H-1 of the glucose at δ_H 4.55 correlated with C- α of the 2-(3,4-dihydroxyphenyl)-2-hydroxyethan-1-oxyl moiety at δ_C 70.8, the H- α of the 2-(3,4-dihydroxyphenyl)-2-hydroxyethan-1-oxyl moiety at δ_H 3.47 and δ_H 3.94 correlated with C-1 of the glucose at δ_C 96.5, the H-2 of rhamnose I at δ_H 3.53 correlated with C- δ 0 of the 2-(3,4-dihydroxyphenyl)-2-hydroxyl-ethan-1-oxyl moiety at δ_C 75.9, furthermore in the H-H COSY spectrum, the H-2 of rhamnose at δ_H 3.53 correlated with H- δ 0 of the

Table 1 The 1 H NMR(500 MHz) and 13 C NMR (125 MHz) spectral data of 1 (DMSO-d6, δ ppm).

Aglycone	δc	$\delta_{ m H}$	Sugar moiety	δς	$\delta_{ m H}$
1	127.8		Glucose		
2	113.4	6.74 (d, 1H, 1.0 Hz)	1"	96.5	4.55 (d, 1H, 7.5 Hz)
3	144.9		2"	80.2	3.38 (dd, 1H, 7.5/10.0 Hz)
4	145.0		3"	73.9	4.06 (t, 1H, 10.0 Hz)
5	115.2	6.70 (d, 1H, 8.0 Hz)	4"	68.9	4.84 (t, 1H, 10.0 Hz)
6	117.0	6.66 (dd, 1H, 8.0/1.0 Hz)	5"	74.2	3.90 (m, 1H)
α	70.8	3.47 (m, 1H); 3.94 (m, 1H)	6"	63.0	3.30 (m, 2H)
β	75.9	4.57 (dd, 1H, 2.0/9.5 Hz)	Rhamnose		
Ester moiety			1‴	100.2	4.98 (s, 1H)
1'	125.3		2""	70.3	3.53 (dd, 1H)
2'	114.7	7.03 (d, 1H, 1.5 Hz)	3‴	70.1	3.23 (m, 1H)
3'	148.5		4‴	71.3	3.09 (t, 1H, 9.0 Hz)
4'	145.3		5‴	68.7	3.41 (m, 1H)
5'	115.6	6.76 (d, 1H, 8.0 Hz)	6′′′	17.8	1.02 (d, 3H, 6.5 Hz)
6'	121.4	6.99 (dd, 1H, 8.0/1.5 Hz)	Apiose		
α'	165.4		1""	109.0	4.77 (d, 1H, 3.0 Hz)
β′	112.9	6.20 (d, 1H, 15.5 Hz)	2""	75.7	3.74 (d, 1H, 3.0 Hz)
γ'	146.1	7.50 (d, 1H, 15.5 Hz)	3""	78.7	
			4""	73.3	3.81/3.56 (1H each, 10 Hz)
			5""	66.7	3.55 (m, 1H), 3.38 (m, 1H)

2-(3,4-dihydroxyphenyl)-2-hydroxyethan-1-oxyl moiety at δ_H 4.57, confirmed this conclusion. So the structure of compound 1 was shown in Fig. 1 (Table 1).

References

- [1] T. Kanchanapoom, R. Kasai, et al. Phytochemistry 57 (2001) 1245.
- [2] M.R. Kernan, A. Amerquaye, J.L. Chen, et al. J. Nat. Prod. 61 (1998) 564.
- [3] I. Kyriakopoulou, P. Magiatis, A.L. Skaltsounis, et al. J. Nat. Prod. 64 (2001) 1095.
- [4] W.J. Zhang, J.H. Xu, Y.F. Qi, W.Y. Liu, B. Di, C.Y. Wu, K.W. Hua, Chin. J. New Drugs 16 (2007) 621.
- [5] Y. Liu, et al. Phytochemistry 48 (1998) 339.
- [6] K. Endo, K. Takahashi, et al. Heterocycles 19 (1982) 261.
- [7] Y.F. Su, Y. Luo, L. Chen, F.Y. Yang, Nat. Prod. Res. Dev. 18 (2006) 878.